Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(26): 6830-6835, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607055

RESUMO

Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted controls. We also examined the relationship between connectivity changes and neuroplasticity-related gene expression profiles in the cerebral cortex. We observed that multisensory integration areas exhibited enhanced functional connectivity in blind children and that this reorganization was spatially associated with the transcription levels of specific members of the cAMP Response Element Binding protein gene family. Using systems-level analyses, this study advances our understanding of human neuroplasticity and its genetic underpinnings following sensory deprivation.


Assuntos
Cegueira/metabolismo , Regulação da Expressão Gênica , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Plasticidade Neuronal , Córtex Somatossensorial/metabolismo , Cegueira/patologia , Criança , Feminino , Humanos , Masculino , Rede Nervosa/patologia , Córtex Somatossensorial/patologia
2.
Front Syst Neurosci ; 10: 61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458350

RESUMO

It is well established that the human brain reorganizes following sensory deprivations. In blind individuals, visual processing regions including the lateral occipital cortex (LOC) are activated by auditory and tactile stimuli as demonstrated by neurophysiological and neuroimaging investigations. The mechanisms for such plasticity remain unclear, but shifts in connectivity across existing neural networks appear to play a critical role. The majority of research efforts to date have focused on neuroplastic changes within visual unimodal regions, however we hypothesized that neuroplastic alterations may also occur in brain networks beyond the visual cortices including involvement of multimodal integration regions and heteromodal cortices. In this study, two recently developed graph-theory based functional connectivity analyses, interconnector analyses and local and distant connectivity, were applied to investigate functional reorganization in regional and distributed neural-systems in late-onset blind (LB) and congenitally blind (CB) cohorts each compared to their own group of sighted controls. While functional network alterations as measured by the degree of differential links (DDL) occurred in sensory cortices, neuroplastic changes were most prominent within multimodal and association cortices. Subjects with LB showed enhanced multimodal integration connections in the parieto-opercular, temporoparietal junction (TPJ) and ventral premotor (vPM) regions, while CB individuals exhibited increased superior parietal cortex (SPC) connections. This study reveals the critical role of recipient multi-sensory integration areas in network reorganization and cross-modal plasticity in blind individuals. These findings suggest that aspects of cross-modal neuroplasticity and adaptive sensory-motor and auditory functions may potentially occur through reorganization in multimodal integration regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...